Calibration of the Stochastic Multicloud Model Using Bayesian Inference

نویسندگان

  • Michèle De La Chevrotière
  • Boualem Khouider
  • Andrew J. Majda
چکیده

The stochastic multicloud model (SMCM) was recently developed (Khouider, Biello, and Majda, 2010) to represent the missing variability in general circulation models due to unresolved features of organized tropical convection. This research aims at finding a robust calibration methodology for the SMCM to estimate key model parameters from data. We formulate the calibration problem within a Bayesian framework to derive the posterior distribution over the model parameters. The main challenge here is due to the likelihood function which requires solving a large system of differential equations (the Kolmogorov equations) as many times as there are data points, which is prohibitive both in terms of computation time and storage requirements. The most attractive numerical techniques to compute the transient solutions to large Markov chains are based on matrix exponentials, but none is unconditionally acceptable for all classes of problems. We develop a parallel version of a preconditioning technique known as the Uniformization Method, using the PETSc (Portable, Extensible Toolkit for Scientific Computation) suite of sparse matrix-vector operations. The parallel Uniformization Method allows for fast and scalable approximations of large sparse matrix exponentials, without sacrificing accuracy. Sampling of the high dimensional posterior distribution is achieved via the standard Markov Chain Monte Carlo. The robustness of the calibration procedure is tested using synthetic data produced by a simple toy climate model. A sensitivity study to the length of the data time series and to the prior distribution is presented, and a sequential learning strategy is also tested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Calibration of Multistate Stochastic Simulators

Inference on large-scale models is of great interest in modern science. Examples include deterministic simulators of fluid dynamics to recover the source of a pollutant, and stochastic agent-based simulators to infer features of consumer behaviour. When computational constraints prohibit model evaluation at all but a small ensemble of parameter settings, exact inference is infeasible. In such c...

متن کامل

Pseudo-Likelihood Inference Underestimates Model Uncertainty: Evidence from Bayesian Nearest Neighbours

When using the K-nearest neighbours (KNN) method, one often ignores the uncertainty in the choice of K. To account for such uncertainty, Bayesian KNN (BKNN) has been proposed and studied (Holmes and Adams 2002 Cucala et al. 2009). We present some evidence to show that the pseudo-likelihood approach for BKNN, even after being corrected by Cucala et al. (2009), still significantly underest...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

On Calibration and Application of Logit-Based Stochastic Traffic Assignment Models

There is a growing recognition that discrete choice models are capable of providing a more realistic picture of route choice behavior. In particular, influential factors other than travel time that are found to affect the choice of route trigger the application of random utility models in the route choice literature. This paper focuses on path-based, logit-type stochastic route choice models, i...

متن کامل

Risk Analysis of Operating Room Using the Fuzzy Bayesian Network Model

To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014